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Scale, Scaling, and Multiscaled Remote Sensing Data

Scale is an "innate" concept in geographic information systems. It is recognized as

something that is intrinsic to the ingestion, storage, manipulation, analysis, modeling, and

output of space and time data within a GIS purview, yet the relative meaning and

ramifications of scaling spatial and temporal data from this perspective remain enigmatic.

As GISs become more sophisticated as a product of more robust sottware and more

powerful computer systems, there is an urgent need to examine the issue of scale, and its

relationship to the whole body of spatiotemporal data, as imparted in GISs. Scale is

fundamental to the characterization of geo-spatial data as represented in GISs, but we

have relatively little insight on the effects of, or how to measure the effects of, scale in

representing multiscaled data; i.e., data that are acquired in different formats (e.g., map,

digital) and exist in varying spatial, temporal, and in the case of remote sensing data,

radiometric, configurations. This is particularly true in the emerging era of Integrated

GISs (IGIS), wherein spatial data in a variety of formats (e.g., raster, vector) are

combined with multiscaled remote sensing data, capable of performing highly

sophisticated space-time data analyses and modeling. Moreover, the complexities

associated with the integration ofmultiscaled data sets in a multitude of formats are

exacerbated by the confusion of what the term "scale" is from a multidisciplinary

perspective; i.e., "scale" takes on significantly different meanings depending upon one's

disciplinary background and spatial perspective which can lead to substantive confusion in

the input, manipulation, analyses, and output oflGISs (Quattrochi, 1993). Hence, we

must begin to look at the universality of scale and begin to develop the theory, methods,
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andtechniquesnecessary to advance knowledge on the "Science of Scale" across a wide

number of spatial disciplines that use GISs.

To adequately address the complexities of scale within an IGIS framework, we

must not only have a better understanding of what scale/s, and what its dynamics _ but

we must also develop innovative and robust methods or "tools" to adequately manipulate,

analyze and convey the very nature of multiscaled data (in both space and time). This is

particularly true with the advent of remote sensing platforms, such as the NASA (Earth

Observing System) EOS suite of sensors tentatively set to be launched in 1998 (see MTPE

EOS, 1995), where large quantities of remote sensing data will become available at many

different space, time, and radiometric resolutions. Although we may envision that these

data will be used in highly complex space-time models to observe, analyze, and measure a

host of land surface process and biophysical interrelationships (see Asrar and Dozier,

1994), there are a number of vexing questions that must be addressed on how we

approach using such multiscaled data in an IGIS format. Outside of the mechanical

difficulties that need to be overcome in manipulating multiscaled data, of paramount

concern is how to analyze such complex data sets. What tools do we use to robustly

maximize the information content within and amongst different remote sensing data sets

and assess highly complex interrelationships between these data sets using an IGIS

approach?

Geostatistics and Fractal Analysis

Although still somewhat nascent, the application ofgeostatistics to remote sensing

appears to offer great potential for analyzing multiscaled data collected at different space,

time and radiometric resolutions. In its "purest" sense, geostatistics relate to statistical
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techniques that emphasize location within areal distributions (Cressie, 1993). For analysis

of remote sensing data, however, geostatistics can be perceived in a more universal role

where the focus of concern is with statistical theory and applications for processes with

continuous spatial index; i.e., where the data represent spatiotemporal processes

continuously across or throughout a domain or region. From this purview, geostatistics

may be particularly useful for characterizing and visualizing the state, distribution, pattern,

and arrangement of landscape attributes and processes as manifested in multiscale remote

sensing data. Questions of scale in remote sensing and spatial statistics combine both the

issues of level of aggregation of the observation (i.e., the "volume" of space that a remote

sensing observation represents) and the extent of the observation (the "footprint" of the

data and the times of data collection). These are not unrelated, particularly if the data

behave in a self-similar way across a number of scales; that is, processes or patterns

estimated or measured from remote sensing data at one space and time scale are relevant

to the inference of these processes at different scales. Self-similarity is the foundation for

fractal analysis (Mandelbrot, 1977 and 1983), which is why there has been a great deal of

recent interest in this geostatistical technique to model naturally occurring phenomenon

(Goodchild and Mark, 1987; De Cola, 1989; Lam, 1990; Larn and De Cola, 1993; Barton

and La Pointe, 1995; Quattrochi and Goodchild, 1997).

Fractal analysis offers significant potential for improvement in the measurement

and analysis of spatially, temporally, and spectrally complex remote sensing data within an

IGIS format CLam and Quattrochi, 1992; de Jong and Burrough, 1995; Pecknold et al.,

1997). Because of self-similarity, fractal analysis of multiscale remote sensing data can

potentially yield quantitative insight on the spatial complexity and information content
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containedwithin thesedata. Hence,remotesensingdataacquiredfrom differentsensors

andatdifferingspatial,temporal,andspectralresolutionscouldbecomparedand

evaluatedbasedon fractalmeasurements.This is especiallytruewhenoneconsidersthat

remotesensingis themainsourceof datathatwe canusefor analyzingthe spaceandtime

dependenceof surfaceandatmosphericphenomenaat relativelylargescalesandover large

areas(LovejoyandSchertzer,1988,1990;Daviset al., 1991).

Fractaldimensionsderivedfrommultiscaleremotesensingdatacouldalsobe

comparedwith othergeostatisticalmeasures(seeCressie,1993)to betterunderstandthe

significanceof thespatialandtemporalinterrelationshipspresentwithin multiple

representationsof imagedata. Thus,anintegratedsottwarepackagethat containsa

robustsetof fractalmeasurementalgorithmsembeddedin aGIS-typearchitecturewould

beausefultool for characterizingmultiscaledremotesensingandassociatedspatialdata

within anIGIS perspective.Softwareof thistypewouldpermitstudyingbiophysical,

ecological,andenvironmentalphenomenausingdataobtainedfrom differentremote

sensingsystems.A tool suchasthiswouldalsoenablethemodelingof how these

phenomenachangethroughspaceandtime. Additionally,a geostatisticalpackageof this

typewould permitaneasierandmorerobusttestingof thesuitability,reliability,and

accuracyof fractalsfor thecharacterizationandspatialandtemporalmodelingof

multiscaledlandscapephenomenaasmeasuredfrom remotesensingdata.

Fractal Analysis Using the Image Characterization and Modeling System (ICAMS}

We have developed a GIS module called the Image Characterization and Modeling

System (ICAMS) to measure, characterize, and model multiscale remotely sensed data

(Quattrochi, et al., 1997; Lam, et al., 1998). ICAMS contains a number of spatial
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measurementmethodsthat arenot convenientlyavailablein onesoftwarepackageto the

generalresearchcommunity:

• fractal measurement

• spatial autocorrelation

• land/water and vegetated/nonvegetated boundary delineation

• textural measures

• spatial aggregation routines

as well as other descriptive measures and specialized functions, along with image input

and output routines. ICAMS currently runs on the Arclnfo and Intergraph MGE

platforms. Ongoing work will make ICAMS more broadly available as a non-specific

workstation package that will be able to be implemented as hardware-generic software.

ICAMS has four subsystems: 1) Image Input, which includes basic image processing

functions, such as format transformation, georeferencing and co-registration, noise

removal, and filtering functions; 2) Image Characterization, which provides users with an

array of non-spatial, as well as spatial measures, for characterizing image data. The non-

spatial measures include mean, mode, median, variance, and histogram. The spatial

measures include fractal analysis, variogram analysis, spatial autocorrelation statistics, and

textural measures; 3) Specialized Functions, for calculation of the Normalized Difference

Vegetation Index (NDVI) and provides the capability for delineation of land/water and

vegetated/non-vegetated boundaries. This subsystem also provides aggregation routines

for aggregating pixels to simulate multiscaled data for scale effect analyses; and 4) Image

Display and Output, for the display and output of images in two-dimensional or three

dimensional form, output of analytical results and statistics, and creates digital output of
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intermediate or derived images. A more complete description of ICAMS and its operation

is given in Quattrochi et al., 1997.

Fractal measurement in ICAMS focuses on three methods for calculating the

fractal dimension: isarithm, variogram, and triangular prism. These three methods were

implemented and tested previously in a comparative analysis as applied to remote sensing

data with both interesting and differing results (Jaggi et al., 1993). Given their earlier use,

they were ported to ICAMS to permit more widespread and more robust testing by the

broader spatial analysis community.

With the advent of ICAMS, we have performed further analyses with these three

fractal measurement routines as applied to remote sensing data (Lam et al., 1997, 1998;

Quattrochi et al., 1997). Recent work with ICAMS has focused on testing how fractal

dimension varies between two dates of Landsat Thematic Mapper (TM) data sets and the

aggregation of these data over an urban area in southwestern Louisiana, U.S.A. (Lam et

al., 1998). We present an overview &the results obtained from this study and compare

them with an analysis of the fractal measurement of satellite data collected at different time

periods over a portion &the Great Basin Desert region in eastern Nevada, U.S.A. to

represent a "natural" landscape. This comparison provides a good test of the application

of fractal analysis for characterizing landscape spatiotemporal dynamics, and also

illustrates the utility of ICAMS for facilitating the more efficient and in-depth use of

geostatistics for analysis of remote sensing data.
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Fractal Analysis of Landsat TM Data for Lake Charles, Louisiana, U.S.A.

Landsat TM images acquired at two different dates for the city of Lake Charles,

Louisiana have been used to analyze variability in fractal dimension for multitemporal data

via ICAMS. Lake Charles is located in the southwestern portion of Louisiana (Figure 1).

The first image was acquired on November 30, 1984, and the second on February 8, 1993,

a difference of approximately 9 years. Subsets ofa 5 km by 5 km area with a pixel

resolution of 25 m by 25 m were created, with each subset containing 201 by 201 pixels.

The subsets cover part of the city &Lake Charles, which had a population of about

75,000 in 1980 and decreased in size to 71,000 in 1992. The 1984 subset has been used

as a representative urban landscape in a previous study that examined the ffactal properties

of remote sensing images (Lain, 1990). The selection of the same study area for the

present investigation is based on the availability of data in two dates, so that analysis of

temporal changes can be made. At the same time, we realize that the study area covers a

medium-size urban area with little urban growth, and significant changes in terms &land

cover are not expected in this region between these two dates.

Figure 2 displays the two Landsat TM images for Lake Charles. While large

changes in land cover were not expected, a visual comparison between the two images

shows that the 1993 image has slightly more roads and buildings, as evidenced in the

southeast corner and along the highway (Highway 210) in the southern part of the image.

Table 1 lists the summary statistics of all seven bands for the two images, as well as the

ffactal dimension values computed for the two images (discussed below). With the

exception &the thermal band (band 6), the 1993 image generally has smaller ranges of
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spectralreflectancevalues;lowermaximumvalues;and smaller coefficients of variation

(standard deviation/mean). These two Landsat images have not been normalized to

minimize sensor calibration offsets and differences in atmospheric effects, but we believe

this will not seriously impact the use of these two data sets to illustrate how fractals in

general, can be applied to characterize temporal differences in remote sensing data.

ICAMS Fractal Analysis of Multidate Lake Charles TM Data

The fractal analysis module in ICAMS was applied to the two images to examine

their spatial and temporal characteristics. The overarching question for this analysis is

how fractal dimensions change with spectral band, pixel resolution, and date of the image.

The answer to this question, if tested with more images in the future, can be used to

determine whether fractal analysis is an effective means for assessing and monitoring

environmental conditions or landscape characteristics from remote sensing data.

The measurement of the fractal dimension D of a spatial phenomenon is the first

step towards developing an understanding of spatial complexity. The higher the D, the

more spatial complexity present. The fractal dimension of a point pattern can be any value

between 0 and 1, a curve, between 1 and 2, and a surface, between 2 and 3. For example,

coastlines have dimension values typically around 1.2-1.3, and topographic surfaces

around 2.2-2.3 (Mandelbrot, 1983). For spectral reflectance surfaces, such as those

reflected by Landsat-TM, the fractal dimensions are much higher, around 2.7-2.9 (Lam,

1990; Jaggi et al., 1993).

There are many methods to define and measure the fractal dimensions of curves

and surfaces. The following provides a brief description of how fractal dimension is

calculated in ICAMS to assist interpretation of the results computed below. More
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detailed descriptions of the major algorithms for geoscience applications can be found in

Klinkenberg and Goodchild (1992), Lam and De Cola (1993), Olsen et al. (1993), and

Klinkenberg (1994).

As noted earlier, the key concept underlying fractals is self-similarity. Many

curves and surfaces are self-similar either strictly or statistically, meaning that the curve or

surface is made up of copies of itself in a reduced scale. The number of copies (m) and the

scale reduction factor (r) can be used to determine the dimensionality of the curve or

surface, where D = -log(m)/log(r) (Falconer, 1990). Practically, the D value of a curve is

estimated by measuring the length of the curve using various step sizes, a procedure

commonly called the walking-divider method. The more irregular the curve, the greater

increase in length as step size decreases. Such an inverse relationship between total line

length and step size can be captured by a linear regression:

Log(L) = C + B log(S)

where L is the line length, S is the step size, B is the slope of the regression, and C is the

constant. D can then be calculated by:

D = 1-B.

In addition to computing/_ for the regression, the scatterplot illustrating the

relationship between step size and line length, known as the fractal plot, is often used as a

visual aid to determine whether the linear fit is good for all step sizes. Many studies have

shown that fractal plots of empirical curves are seldom linear, with many of them

demonstrating an obvious break (Mark and Aronson, 1984). This indicates that real-

world phenomena are seldom pure fractals and self-similarity rarely exists at all scales. In
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suchcases,specificfractaldimensionsaredefinedonlyfor specificscale ranges at which

the regression behaves linearly.

We have implemented fractal surface measurement methods in ICAMS, including

the isarithm, variogram, and triangular prism methods. The isarithm method was used to

compute the fractal dimensions of the images in this study. Previous work has shown that

the isarithm method produces stable results for surfaces with known fractal dimensions, as

opposed to the triangular prism and variogram methods (Lam et al., 1997). The isarithm

method follows the walking-divider logic by measuring the dimensions of individual

isarithms derived from the remote sensing surface (i.e., the iso-spectral reflectance lines).

The D value is calculated using:

D = 2-B.

The final D of the surface is the average of the isarithms that have/_ greater than

0.9. (This algorithm is slightly different from the one presented in Lam's 1990 study, as

the latter averages all isarithms regardless of the/_ values). In ICAMS, the user has a

choice of whether the calculation is based only along rows, columns, or both directions.

Other user input includes the isarithm interval and number of walks.

Table 1 and the corresponding Figure 3 compare the results of the two images.

The number of walks were set to 6 (i.e., 1, 2, 4, 8, 16, 32 pixel intervals), using the

row/column option, and the isarithm interval set to 2 for all calculations.

A comparison between the coefficients of variation and the fractal dimension

values (Table 1) for the 1984 and 1993 Lake Charles images show a moderate correlation

between these two sets of numbers, with r's computed as 0.67 and 0.73 for the 1984 and

1993 images, respectively. For example, in the 1984 image, band 1 has the lowest
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coefficientof variation(exceptband6) with avalueof 0.18but thehighestfractal

dimensionwith avalueof 2.95. Thisdemonstratestheutility of spatialindices:the

coefficientof variationis anon-spatialindexsummarizingthevariationsof thepixelvalues

regardlessof their locations,andthefractaldimension,aspatialindex,describesthe

spatialcomplexityof thepixelvalues.Whenthetwo indicesareusedtogether,abroad

butbasicimpressionof animagecanbeformed,evenwithout viewingthe image. As

such, these indices could be used as part of the metadata for the image. For example,

when an image has a high coefficient of variation but relatively low fractal dimension, such

as band 5 of the 1984 image, the surface would mostly likely exhibit a more spatially

homogeneous pattern, or sometimes with a detectable trend. On the contrary, if an image

has a low coefficient of variation but high fractal dimension, such as band 1, the surface is

much more fragmented and spatially varying. This result confirms the need to utilize

spatial indices, in addition to the traditional non-spatial statistics, in visualizing and

detecting environmental patterns. The fractal indices used here have provided added

information and have served as a quick tool in understanding the spatial and temporal

dimensionality of the images compared for the Lake Charles study area.

Fractal Analysis of Landsat TM Data for Eastern Nevada, U.S.A.

The examination of fractal dimensions for Landsat TM data obtained at two

different dates over Lake Charles, Louisiana represents analysis of a highly modified

landscape -- that of an urban area - albeit, a medium-to-small city in both spatial extent

and population by U.S. standards. For a comparative assessment of how fractal dimension

changes as a function of land cover, terrain, and time characteristics, ICAMS has been

used to derive fractal values from two dates ofLandsat TM data for an area located in the
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GreatBasinDesertregionof easternNevada,USA (Figure4). Thestudyarea

encompassestheRubyMountainsandtheEastHumboldtRangenearElko, Nevada. The

two LandsatTM scenesusedfor analysiswereobtainedinMay andAugust,1993,

respectively.Thesedateshavebeenselectedto coincidewith seasonalvegetation"green-

up" and"die-back"in theeasternNevadastudyarea;theLandsatTM datasetsareshown

inFigures5 and6. Thestudyareais entirelyruralwith onlylimitedagricultural

cultivationpresent;thepredominantlanduseis grazingfor cattle. Themajortopographic

featurewithin thestudyareaisamountainrangewith elevationsgreaterthan2,600m.

Thisareaof theGreatBasincontainsseveralparallelrangesof roughly2,800m mountains

separatedbybroadvalleysat about1800m abovesealevel. Themountainrangesin this

regionhavevery little vegetation,with muchof theexistingvegetationoccurringin desert

valleysor onalluvialfansadjacentto themountains.Valleysaredominatedby shrub

vegetationwith understoryforbsandgrasses.The most prevalent shrubs are big

sagebrush (Artemsia tridentata wyomingensis), black greasewood (Sarcobatus

vermiculatus), and shadscale (Atriplex convertifolia). Other minor shrubs, forbs, and

grasses include Gardner's saltbush (Atriplex gerdnerO, gray molly (Elymus elymoides),

Indian rice grass (Oryzopsis hymenoides), and cheat grass (Bromus tectorum). Sagebrush

is common on the higher elevations of the well-drained alluvial fans, and it eventually

gives way to grasses, forbs and small perennials at lower elevations (Laymon, et al.,

1998).

As with the Lake Charles TM data sets, the eastern Nevada data have not been

normalized to minimize sensor calibration offsets or differences in atmospheric effects.

Again, we believe this will not be a predominant impact on our comparative analysis of
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temporalfractal dimensions between the May and August 1993 data sets. A 201x201

pixel area of the same geographic location from each date of satellite data was a focus for

our comparative fractal assessment (Figures 5 and 6). D was calculated in the row,

column, and row/column directions using the isarithm method in ICAMS for both dates of

data. Table 2 gives the basic image statistics and D values computed for the May vs.

August 1993 Nevada data sets by TM band. A graph of the D values for the row, column,

and row/column directions is given in Figure 7.

An observation of the plots given in Figure 7 provides insight into how both

different and similar the D values are for the two dates of data across all 7 TM bands. The

plots ofisarithm values for May vs. August for channels 1-4 for row, column, and

row/column have similar forms, but obviously different fractal dimensions. The fractal

values vary for TM channels 1-4, but are similar for TM channels 5-7. Discounting any

anisotropic effects caused by running the isarithm algorithm in row, or column directions

across the data for both acquisition dates, it is interesting to see from both Table 2 and

Figure 7 that the lowest fractal dimension values occur for the May column isarithm values

across all TM Channels, except channel 7, while the highest fractal dimensions occur for

the August row/column values. There is also a grouping trend apparent in Figure 7,

where fractal dimensions for the August data are generally in the 2.8-2.9 range for

channels 1-3, while D values for the May data are grouped in the 2.6-2.7 range for these

same channels. Although more research is needed, this grouping trend could indicate that

fractals can be used to characterize temporal changes in landscape properties from the

Landsat TM visible channels 1-3.
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As another general observation of the trends exhibited in fractal dimensions in

Figure 7, it is interesting to see that as TM spectral band wavelength increases, D values

become more similar; i.e., in TM channels 4-7, D values both for the May and August

data, and run in the row, column, and row/column directions, become highly correlated.

This suggests that in the near infrared, middle infrared, and thermal infrared bands of the

Landsat TM, the radiometric influence of each of these channels becomes increasingly less

of a defining factor in affecting D values - at least for the data used here - as opposed to

the potential influence of differences exhibited in landscape features between these

multitemporal data. In observation of Table 2 and Figure 7, we see where fractal

dimensions for the two dates of data are between 2.65 and 2.7 for TM near infrared

channel 4 (0.76-0.90 l-tm). D values are similarly in close approximation between 2.69-

2.73 for both of the TM middle infrared channels 5 (1.55-1.75 l.tm) and 7 (2.08-2.35 ktm).

Again, this indicates for the two dates of satellite data examined here, that at the near and

middle infrared wavelengths of the TM data that radiometric characteristics (e.g.,

chlorophyll and water content spectral response of vegetation) have a more pronounced

effect on D values than do landscape type, pattern or temporal variability characteristics.

It must be noted, however, that these images cover a landscape that is predominated by

semi-desert vegetation where the background spectral signature of soil may have a

pronounced influence on the overall spectral signatures expressed in the near and middle

infrared portions of the electromagnetic spectrum (Laymon et al., 1998). TM band 6 is

the thermal infrared channel (10.42-12.50 I.tm) and is anomalous from the other six TM

bands because of its different spectral wavelength, and because it has a spatial resolution

of 120 m, as opposed to 30 m. It is suspected that the dramatic drop in fractal dimension,
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andhence,imagecomplexity, exhibited for both the May and August TM data (Figure 7)

is a function of the decreased spatial resolution in TM band 6 (120 m as opposed 30 m in

the other TM bands).

As a more detailed analysis of the differences in fractal dimension between the two

dates &data used in this investigation, it is useful to compare on an individual basis, the

plots olD values run via the isarithm method at the row, column, and row/column

directions. Figures 8, 9, and 10 show plots &May vs. August D values as computed in

the row, column, and row/column directions, respectively. Although as noted above, D

values in TM channels 4-7 are very similar, there are in some cases, striking differences in

fractal dimensions for TM channels 1-3 between the two dates of data. In all three cases

(Figures 8-10), the widest range of comparative D values occurs for TM channel 1 located

in the visible portion of the electromagnetic spectrum (0.45-0.52 p.m). Additionally, in all

three graphs, the highest D values for the TM visible channels occur for the August 19,

1993 date. For the May vs. August row directions, channel 1 fractal dimensions are 2.69

and 2.83, respectively, while comparative D values for TM bands 2 and 3 are 2.73 vs.

2.79, and 2.79 vs. 2.71, respectively, for May and August. Differences in D values for the

May vs. August column isarithm runs (Figure 9) for TM channels 1-3 are larger than those

shown for those computed for rows given in Figure 8. For channel 1, comparative D

column values are 2.89 for August and 2.6 for May, channel 2 values are 2.86 and 2.65

for August and May, respectively, and channel 3 values are 2.85 (August) and 2.63 (May).

Excluding anisotropic effects, reasons for why the August TM visible band data have

higher fractal dimensions than those exhibited by the May visible bands can only be

speculated. Most likely, image complexity is greater within the TM visible bands for
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Augustbecauseof theheterogeneousinfluenceof thehighspectralresponseof desert

soils interspersed with semi-arid vegetation that is either senescing or has senesced, which

becomes a predominating effect on the visible channel data. Image complexity in the

August TM visible data may also be enhanced by the vegetation extant on the mountains

as opposed to the snow evident in the May TM scene (Figure 5). Moreover, other

factors, such as water vapor in the atmosphere, may have a damping effect on image signal

in the visible bandwidths for the May data, thereby effectively reducing or mitigating

overall image complexity, as reflected in the D values for May. These similar trends of

having higher fractal dimensions for visible band TM data and more closely related D

values for TM near, middle, and thermal infrared band data are also evident in the plot of

fractal dimensions for the Lake Charles, Louisiana data investigated in this study (Figure

3). Obviously, this trend needs to be examined further using other remote sensing data

sets to see if this is a general reflection of how fractal dimension behaves in the visible

versus near, middle, and thermal infrared portions of the electromagnetic spectrum, and if

so, what the causal factors are behind this phenomenon. These differences, however, may

potentially indicate that fractals are useful for characterizing temporal differences in

landscape attributes using the visible channels in Landsat TM, and possibly other, remotely

sensed data.

Summary and Conclusions

An analysis of two different sets of multidate TM imagery for Lake Charles,

Louisiana and for eastern Nevada, has demonstrated that computation of the fractal

dimension by spectral channel for remote sensing data yields interesting results on how

image complexity varies for two dates of satellite data for the same geographic area. In
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using the ICAMS software to calculate D values via the isarithm method, we have shown

that fractal dimension values for the multidate satellite data examined here tend to become

similar (i.e., closely related in value) in the near infrared, middle infrared, and thermal

infrared TM bands. Fractal values for the TM visible bands (i.e., channels 1, 2, and 3) are

different and suggest there may be more image complexity evident in the visible portion of

the electromagnetic spectrum than for the infrared bands. Additionally, from observation

of Figures 8-10, it appears that discounting any anisotropic effects, there are relatively

little differences in D values when the isarithm method is applied in the row, column, or

row/column method - at least for the eastern Nevada data used in this analysis - in respect

to the form of the fractal dimension plots for May and August.

Finally, when the two sets ofmultidate images are compared, the Lake Charles

images (representing a human-modified landscape) have smaller changes in the fractal

dimension values between the two dates than that of the Nevada multidate images

(representing a natural landscape). The seasonal changes in the Nevada natural landscape,

especially in the visible spectrum, have been adequately reflected by the fractal dimension

values computed for the images.

Although this study does not provide conclusive evidence on how fractal

dimension can be used to define or quantitatively describe temporal landscape differences

between two dates of TM imagery obtained for the same area, it does show that D values

can potentially be useful for developing a better understanding of remote sensing data

characteristics, particularly in regard to examining how spectral response affects fractal

dimension over time. The use of fractal dimension, therefore, when combined with

"traditional" non-spatial statistics, such as coefficient of variation, could be important
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metadatainformation that can be used as a guide for relating spectral band information

with image content as a function of spectral wavelength. This information is going to be

immensely useful for analysis of the voluminous amounts of satellite remote sensing data

obtained from the NASA EOS suite of sensors. Here fractal dimension values of

individual bands could be used as a pre-analysis tool for selecting individual channels or

combinations of bands for assessment of specific landscape processes or phenomena.

Such application will be especially useful for the analysis of hyperspectral image data.

Moreover, this study annunciates the need for more research on what the

differences in fractal dimension quantitatively mean for different landscape characteristics

as manifested in remote sensing data. For example, comparison of the plots offractal

dimension for the Lake Charles and eastern Nevada TM data (e.g., Figures 3 and 7) show

there are differences in both the D values and their overall form across TM bands for these

two landscapes. An understanding of what the subtleties of these differences mean in

respect to landscape composition and spectral response needs to be developed to make

fractal analysis a truly useful geostatistical analytical tool. Concomitant with this need to

define what fractals values mean, is the need for more research in applying fractal analysis

to multitemporal and multiscaled remote sensing data to better understand what changes

in D values describe or define as represented in these data. Again, the plots olD values

for the Lake Charles and eastern Nevada data illustrate there are both temporal and

intrannual differences in fractal dimension derived from multitemporal TM data for the

study areas examined in this investigation. These differences or changes in fractal

dimension must be quantitatively associated with specific landscape attributes and spectral

band characteristics, to realize what these changes in fractal dimension through time mean;
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(e.g., is a fractal dimension of 2.6 vs. 2.7 significant in terms of relating changes in

landscape characteristics as identified from remote sensing data?). Lastly, although this

study has intimated that spectral response has a very profound influence on fractal

dimension, more research is required to understand how fractal dimension is related to, or

affected by, differences in spectral resolutions of remote sensing data. This ultimately,

may be a key aspect in determining how useful fractals are for providing new, and

heretofore unrealized, quantitative data on which spectral bandwidths are most important

for discriminating or spectrally separating landscape features or land surface processes.
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